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Quantitatively assessing the medial temporal lobe (MTL) structures atrophy is vital for
early diagnosis of Alzheimer’s disease (AD) and accurately tracking of the disease
progression. Morphometry characteristics such as gray matter volume (GMV) and
cortical thickness have been proved to be valuable measurements of brain atrophy.
In this study, we proposed a morphometric MRI analysis based method to explore the
cross-sectional differences and longitudinal changes of GMV and cortical thickness in
patients with AD, MCI (mild cognitive impairment) and the normal elderly. High resolution
3D MRI data was obtained from ADNI database. SPM8 plus DARTEL was carried out
for data preprocessing. Two kinds of z-score map were calculated to, respectively,
reflect the GMV and cortical thickness decline compared with age-matched normal
control database. A volume of interest (VOI) covering MTL structures was defined
by group comparison. Within this VOI, GMV, and cortical thickness decline indicators
were, respectively, defined as the mean of the negative z-scores and the sum of the
normalized negative z-scores of the corresponding z-score map. Kruskal–Wallis test
was applied to statistically identify group wise differences of the indicators. Support
vector machines (SVM) based prediction was performed with a leave-one-out cross-
validation design to evaluate the predictive accuracies of the indicators. Linear least
squares estimation was utilized to assess the changing rate of the indicators for the
three groups. Cross-sectional comparison of the baseline decline indicators revealed
that the GMV and cortical thickness decline were more serious from NC, MCI to AD, with
statistic significance. Using a multi-region based SVM model with the two indicators,

‡Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and
implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete
listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf
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the discrimination accuracy between AD and NC, MCI and NC, AD and MCI was
92.7, 91.7, and 78.4%, respectively. For three-way prediction, the accuracy was
74.6%. Furthermore, the proposed two indicators could also identify the atrophy rate
differences among the three groups in longitudinal analysis. The proposed method could
serve as an automatic and time-sparing approach for early diagnosis and tracking the
progression of AD.

Keywords: MRI, Alzheimer’s disease, morphometric analysis, medial temporal lobe, gray matter volume, cortical
thickness, atrophy indicator

INTRODUCTION

Alzheimer’s disease (AD) is an insidious onset neurodegenerative
disease primarily characterized by progressive memory loss
and accompanied by several kinds of cognitive and functional
impairment (McKhann et al., 2011). Medial temporal lobe
(MTL) structures such as hippocampus and entorhinal cortex
are essential for declarative or long term memory, in which the
AD core pathological changes and earliest atrophy takes place
(Kimura et al., 2016). Mild cognitive impairment (MCI) can
be regarded as a transitional period between normal aging and
probable AD (Petersen et al., 2001). Several studies have proved
that the atrophy of MTL structures are associated with the time
to onset of MCI (Soldan et al., 2015) and the cognitively normal
individuals with a greater rate of atrophy in MTL regions would
potentially progress to MCI (Miller et al., 2013; Pacheco et al.,
2015). Therefore, the atrophy in MTL structures may provide
important information for MCI and early AD diagnosis and
evaluating the risk of progression from normal to MCI and MCI
to AD.

Numerous of studies have adopted morphometry information
such as gray matter volume (GMV) and cortical thickness to
detect the atrophy of MTL regions in AD and MCI. Reduction
of hippocampal volume is a core biomarker for AD (Dubois
et al., 2007, 2010; McKhann et al., 2011) and the severity of
episodic memory deficits and cognitive disorders in MCI and
AD are correlated with the hippocampal volume (Sarazin et al.,
2010; McDonald et al., 2012). Cortical thinning was proved to be
associated with MCI and poor episodic memory (Fujishima et al.,
2014), and Pettigrew et al. (2016) found that normal cognitive
individuals with low cortical thickness in AD vulnerable regions
have a higher risk of progression to clinical symptom onset within
7 years of baseline. Moreover, the pattern of volume reduction of
the hippocampal subfields combined with the cortical thinning of
the adjacent extrahippocampal structures such as entorhinal and
perirhinal cortex and parahippocampal cortex was found specific
for AD compared with dementia with Lewy bodies (Delli Pizzi
et al., 2016; Mak et al., 2016; Pettigrew et al., 2016). It suggests that
the atrophy pattern characterized by the combination of GMV
and cortical thickness of MTL structures may be useful to identify
AD and MCI whose underlying pathophysiology is AD, and may
overcome the specificity lacking for differentiating AD and MCI
from other non-AD forms of dementia (Laakso et al., 1996; Chan
et al., 2001; van de Pol et al., 2006; Bastos-Leite et al., 2007).

In order to acquire these atrophy morphometry informations
from structural MRI brain images of patients, many

morphometry methods were proposed. Manual hippocampus
volumetry (Duara et al., 2008) is the gold standard to detect
hippocampus atrophy but it is time consuming and costly
(Pini et al., 2016). Alternatively, automatic methods such as
surface based morphometry (SBM; Fischl, 2012) and voxel
based morphometry (VBM; Ashburner and Friston, 2000) are
preferred. Previously, surface based morphometric tools, for
example, the Freesurfer software, is widely utilized in scientific
studies, but need a long execution time. VBM has been widely
used in the routine clinical due to time sparing as well as
unbiased and comprehensive evaluation of structural differences
throughout the brain (Matsuda, 2016). Recently, a VBM software
named Morphometric Analysis Program (MAP) was developed
and has been proved to be effective in detecting the focal
cortical dysplasia (FCD) which is the possible lesion of epilepsy
(Huppertz et al., 2005; Wagner et al., 2011). In the framework
of this software, using SPM5 (Wellcome Department of Imaging
Neuroscience, London, UK) for data preprocessing, feature maps
called ‘extension image’ and ‘thickness image’ were calculated via
voxel wise z-score analysis to highlight the subtle abnormality
of gray matter density (GMD) and cortical thickness of the
epilepsy patients compared with a normal controls database
(NCDB).

High registration quality is very important for voxel-by-
voxel z-score analysis to obtain reliable z-score maps. However,
the quality of registration only using old versions of SPM
might be insufficient to buttress a convincing z-score analysis
to reveal the subtle changes between the cognition impaired
patients and the normal healthy or tracking the gradual
process of brain atrophy. Recent years, an algorithm called
diffeomorphic anatomical registration using exponentiated Lie
algebra (DARTEL) (Ashburner, 2007) has been available in new
versions of SPM (SPM8 and SPM12). DARTEL has stronger
ability to deal with the local anatomical differences among
individuals, thus, to achieve higher registration accuracy. In a
previous VBM study (Matsuda et al., 2012) using SPM8 plus
DARTEL, z-score analysis was carried out to estimate the GMV
decline, and several indicators were proposed base on the z-score
map to discriminate very mild AD patients from normal controls
and reached considerable accuracy.

In this study, based on the MAP framework, we proposed a
modified morphometric MRI analysis method to quantitatively
assessed the GMV and cortical thickness decline in MTL
structures of AD, MCI, and normal control (NC), and to validate
the hypothesis that the degrees and rates of atrophy in MTL of
AD, MCI and normal aging are different, from severe to slight.
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Both cross-sectional and longitudinal atrophy characteristics are
taken into consideration.

MATERIALS AND METHODS

Data Acquisition
The subject data used in this study was downloaded from
the public Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database1. The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator Michael W.
Weiner, MD. ADNI aims to seek sensitive and accurate methods
and biomarkers to serve MCI and AD early diagnostic, as
well as to track the progress of the disease and evaluate
the effects of treatment or potential interventions. The ADNI
database provide abundant and quality assured structural
MRI data of people without memory problems, patients
with MCI and patients who had been diagnosed AD. The
inclusion/exclusion criteria are as follows (for up-to-date
information2):

(1) Normal subjects: MMSE scores between 24 and 30
(inclusive), a CDR of 0, non-depressed, non-MCI, and
non-demented. The age range of normal subjects will be
roughly matched to that of MCI and AD subjects.

(2) MCI subjects: MMSE scores between 24 and 30 (inclusive),
a memory complaint, have objective memory loss
measured by education adjusted scores on Wechsler
Memory Scale Logical Memory II, a CDR of 0.5, absence
of significant levels of impairment in other cognitive
domains, essentially preserved activities of daily living, and
an absence of dementia.

(3) AD subjects: MMSE scores less than 24 (inclusive), a CDR
greater than 0.5 (inclusive), and meets NINCDS/ADRDA
criteria for probable AD (this criteria is different from the
one in ADNI site for this study).

(4) At least 1 year and three visits structural MRI data is
available.

A total of 88 subjects (15 AD, 23 MCI, and 51 NC) with 1–
4 years follow-up (3–7 visits) MRI data were finally included
in this study. According to the MAP framework, we randomly
selected 25 NC from the 51 NC to be the NCDB to establish a
normal distribution for z-score analysis. Atrophy characteristics
computation was performed among the 15 AD, 23 MCI, and the
remaining 26 NC. The baseline information of the subjects is
shown in Table 1.

All the subjects were scanned by Trio-Tim 3 Tesla MRI System
(Siemens, Erlangen, Germany). High resolution T1-weighted
magnetization prepared rapid gradient echo (MPRAGE) images
(voxel size: 1 mm × 1 mm × 1.2 mm, image size:
240 × 256 × 176 voxel) were obtained with the following
parameters: TE = 2.95 ms, TR = 2300 ms, TI = 900 ms, flip
angle= 9◦.

1http://adni.loni.usc.edu
2www.adni-info.org

TABLE 1 | Descriptive baseline statistical information for the subjects.

Group AD MCI NC NCDB

Sample size 15 23 26 25

Agea 74.5 ± 8.5 73.4 ± 9.0 76.1 ± 8.1 73.8 ± 6.6

Female percentageb 53% 39% 54% 52%

MMSEc 21.5 ± 3.4 25.4 ± 3.3 28.8 ± 1.2 28.9 ± 1.2

MMSE, mini-mental state examination.
aOne-way ANOVA among groups: F = 0.308, p = 0.819.
bχ2 test for gender composition among groups: χ2

= 1.336, p = 0.721.
cOne-way ANOVA among groups: F = 50.14, p < 0.001; Turkey’s pairwise
comparison: AD vs. MCI, AD vs. NC, AD vs. NCDB, MCI vs. NC, MCI vs. NCDB,
p < 0.001; NC vs. NCDB, p = 0.98.

Data Preprocessing
All the 3D T1-weighted images were intensity corrected and
unified segmented by SPM8, and rigidly aligned tissue classes
images (gray matter images and whit matter images, voxel size:
1 mm× 1 mm× 1 mm) were obtained. DARTEL was adopted to
generate a series of increasingly crisp customized templates using
the gray matter and white matter images of NCDB.

The gray matter and white matter images of all the AD and
MCI patients together with the remaining 26 normal controls
were non-linearly and iteratively registered to the increasingly
crisp customized templates by DARTEL. Then the aligned gray
matter images were normalized to the MNI space followed by
modulation to preserve the amount of gray matter. After that,
global GMV normalization was done to correct the inter-subject
variance of the total brain volume.

GMV z-Score Map Calculation
The modulated and normalized gray matter images (including
the images of NCDB) were smoothed by a 6 mm full width at half
maximum (FWHM) Gaussian kernel. Then, a mean image and a
standard deviation image were generated by computing the mean
and standard deviation of the corresponding voxel values in the
smoothed gray matter images of NCDB. Voxel-by-voxel z-score
was calculated for the smoothed gray matter images of the three
groups so that we obtained GMV z-score map for each individual.
Here, the voxel wise z-score was defined as:

Z = (X −
−

XN)/σN (1)

where X was the voxel value of an individual,
−

XN and σN was the
corresponding voxel value of the mean and standard deviation
image of NCDB, respectively.

Cortical Thickness z-Score Map
Calculation
The modulated and normalized gray matter images (including
the images of NCDB, not smoothed here) were converted to
binary images with a threshold of 0.4. Run-length vectors were
computed for each voxel in the gray matter (the voxels with value
1 in the binary image). These vectors were determined along 26
spatial directions from the starting voxel to the tissue boundary.
The Euclidean lengths of each pair of opposing vectors were
summed, and the minimum of the 13 values was adopted to
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be the run-length of the starting voxel. The run-lengths of the
voxels not in the gray matter were set to 0. Then the standard
deviation run-length image of the NCDB was smoothed by a
3 mm FWHM Gaussian kernel to avoid very large or even infinite
negative z-score. After that, a similar z-score comparison analysis
was carried out to acquire cortical thickness z-score map for each
individual. A difference from GMV z-score map calculation was
that the cortical thickness z-score was only calculated for the
voxels in the gray matter of each individual.

VOI Definition and Atrophy Indicators
Calculation
Following the method proposed by Matsuda et al. (2012), we
defined a VOI via group comparison between the GMV images
of the AD patients and the normal controls. The resulting
region contained bilateral MTL structures such as hippocampus,
amygdala, and entorhinal cortex, which was consistent with the
region reported in Ref. 12. GMV decline indicator was defined
as the mean of the negative z-scores in the VOI. We used the
same VOI for cortical thickness decline indicator calculation,
because abnormal GMV decrease may accompanied by abnormal
cortical thinning. The cortical thickness decline indicator was
defined as the sum of the normalized negative z-scores in the
VOI. Here, the normalization means that the original z-score of
each voxel was divided by the corresponding run-length of the
voxel itself.

Whole VOI Based Prediction with
Support Vector Machines (SVM)
To evaluate the predictive performance atrophy indicators, i.e.,
the ability of them to identify the label of unknown subjects, we
implemented a support vector machines (SVM) based prediction
with a leave-one-out cross-validation design using the baseline
atrophy indicators. This procedure was carried out by LibSVM
(Chang and Lin, 2011)3. Both two-way and three-way predictions
were taken into considered.

The atrophy indicators of all the subjects were normalized
by z-transformation and the resulting atrophy features were
inputted into a SVM with RBF kernel. For each of the two
indicators and the combination of them, we separately applied a
leave-one-out cross-validation (LOOCV) and grid search based
procedure to find the optimal regularization factor and RBF
kernel parameter for the SVM model. The predictive accuracy
was defined as the percentage of the correctly predicted cases in
LOOCV with the optimal SVM model.

Multi-Region Based Prediction with SVM
With the similar feature calculation method for the whole VOI,
we calculated the atrophy features in six sub-regions of the
VOI, i.e., VOI-covered bilateral hippocampus, amygdala, and
parahippocampal gyrus. These sub-regions were obtained by
comparing the VOI with Automated Anatomical Labeling – 90
(AAL-90) (Tzourio-Mazoyer et al., 2002) template. Then, we
applied a similar SVM based prediction procedure to evaluate the
predictive performance of the indicators.

3http://www.csie.ntu.edu.tw/∼cjlin/libsvm

Estimation of the Indicators’ Changing
Rates
Using the presented method, we calculated GMV and cortical
thickness decline indictors for all the follow-up data of the
subjects. Then we adopted linear least squares estimation (LLSE)
to assess the changing rates of the indicators as estimation of
atrophy rate.

Evaluation of the Correlation between
the Atrophy Indicators
The correlation between the GMV and cortical thickness
indictors was estimated by Spearman rank correlation coefficients
due to the non-normality of the data.

Statistical Method
Kruskal–Wallis H tests were applied to examine the differences of
the atrophy indicators among the three groups, and if significant
difference was found by H test, Mann–Whitney U tests would
be applied to make pairwise comparisons and Holm–Bonferroni
correction was used to determine if the post hoc tests are
significant.

RESULTS

Baseline GMV and Cortical Thickness
z-Score Maps and Atrophy Indicators
Gray matter volume and cortical thickness z-score maps of an
AD, a MCI and a NC subject were shown in Figure 1. We could
tell significant differences of atrophy degree and atrophy regions
among the AD, MCI, and NC subjects according to the z-score
maps. The AD patient showed obvious GMV loss and cortical
thinning in right hippocampus and entorhinal cortex. The MCI
patient also showed GMV decline in bilateral hippocampus and
right entorhinal cortex, however, with a much smaller GMV
decline area and slight cortical thinning in VOI. For the normal
control, slight cortical thinning and almost no abnormal decrease
of GMV were found with the z-score maps.

Statistic results of the baseline atrophy indicators were listed
in Table 2 (left) and the atrophy indicators value of all the
individuals were shown in Figure 2. AD group had significant
smaller GMV decline indicator (p = 0.0282, corrected) and
cortical thickness decline indicator (p = 0.0138, corrected) than
MCI group. MCI group had significant smaller GMV decline
indicator (p = 0.0009, corrected) and cortical thickness decline
indicator (p= 0.0473, corrected) than NC group. Also, these two
indicators of AD group were both significantly smaller than NC
group (p< 0.0001 for GMV and p= 0.0002 for cortical thickness,
corrected).

Predictive Accuracy of the Indicators
The predictive accuracies of the VOI based and multi-region
based SVM models with one kind (only GMV or only cortical
thickness) and two kinds of (GMV + cortical thickness) decline
indicator were listed in Table 3.
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FIGURE 1 | Standard brain template overlaid by the VOI (blue) and the regions with GMV z-scores less than −2 (hot, left column) and cortical
thickness z-scores less than −0.3 (hot, right column) of (A) an AD patient (GMV decline indicator: −1.699, cortical thickness decline indicator:
−0.079), (B) a MCI patient (−1.122, −0.011) and (C) a normal control (−0.502, −0.013), respectively.

Longitudinal Changing Rate of the
Atrophy Indicators
Longitudinal changing rate of the atrophy indicators (Table 2,
right) were significantly different between the AD and NC
group (p = 0.0178 for GMV, p < 0.0001 for cortical thickness,
corrected). With cortical thickness decline indicator changing
rate, we could also significantly differentiate MCI group from
the AD (p = 0.0006, corrected) and NC (p = 0.0045, corrected).
However, with the GMV decline indicator changing rate, no
statistic significant difference was found between MCI group and
the other two groups (both with p = 0.1618, corrected). The
longitudinal changing rate of the atrophy indicators of all the
individuals were shown in Figure 3.

Correlation between the Atrophy
Indicators
Significant correlation was only found between the changing rates
(rS = 0.726, p = 0.0006, corrected) of the two atrophy indicators
in MCI group.

DISCUSSION

In this study, we established an improved morphometric MRI
analysis method based on MAP framework to quantitatively

evaluate brain atrophy. This method uses SPM8 and DARTEL
for data preprocessing. Significant atrophy degree and rate
differences among the three groups (follow the order of
AD > MCI > NC) could be identified by the proposed GMV and
cortical thickness decline indicators. Moreover, the predictive
performance of the proposed indicators was promising.

The proposed method was implemented using MATLAB
R2012a (The Mathworks, Inc., Natick, MA, USA) under
Microsoft Windows 10 64-bit operating system. The average
execution time was measured on an Intel 2.5 GHz machine
with 8 GB RAM. It takes about 15 min to process the MRI
data of an individual from data preprocessing to obtaining the
GMV and cortical thickness decline indicators, and the whole
procedure was carried out automatically with MATLAB scripts.
As the processing time is much shorter than that of the Freesurfer
pipelines which are widely used in scientific researches, this
method has the potential to be adopted in routine clinic.

The main difference between MAP and the presented method
is that the region of interest of MAP was highlighted by
large positive z-scores, which indicates the gray matter extends
abnormally into the white matter and the abnormal thick cortex.
However, this study was interested in the regions with negative
z-scores which indicate the gray matter loss and abnormal thin
cortex. In addition, MAP used unmodulated gray matter images,
i.e., gray matter density (GMD) images to calculate the z-score
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TABLE 2 | Statistic results of the baseline atrophy indicators and their longitudinal changing rate for AD, MCI, and NC group.

Group Atrophy indicators at baseline Atrophy indicators’ changing rate (per year)

GMV Cortical
thickness

GMV Cortical
thickness

Value (mean ± SD) AD −1.487 ± 0.520 −0.074 ± 0.053 −0.092 ± 0.090 −0.012 ± 0.007

MCI −1.121 ± 0.505 −0.032 ± 0.024 −0.056 ± 0.053 −0.005 ± 0.003

NC −0.733 ± 0.240 −0.019 ± 0.012 −0.030 ± 0.044 −0.003 ± 0.003

Kruskal–Wallis testa H = 24.33,
p < 0.0001

H = 18.34,
p = 0.0002

H = 8.25,
p = 0.0160

H = 19.43,
p < 0.0001

Pairwise post hoc testa,b AD vs. MCI p = 0.0282 p = 0.0138 p = 0.1618 p = 0.0006

AD vs. NC p < 0.0001 p = 0.0002 p = 0.0178 p < 0.0001

MCI vs. NC p = 0.0009 p = 0.0473 p = 0.1618 p = 0.0045

AD, Alzheimer’s disease; MCI, mild cognitive impairment; NC, normal control; GMV, gray matter volume; SD, standard deviation.
aThe p-values were adjusted by Holm–Bonferroni method. Null hypotheses (no significant difference) were rejected at level α = 0.05.
bMann–Whitney U test for pairwise comparison.
Boldfaced characters represent the statistically significant results.

FIGURE 2 | Baseline atrophy indicators for all the individuals in AD, MCI, and NC group.

map, while we used modulated, i.e., GMV images followed
by global GMV normalization for we wanted to compare the
absolute amount of gray matter to quantitatively assess the gray
matter loss.

For cortical thickness z-score map of each individual, in
order to avoid negative z-scores at the voxels out of the gray
matter which not directly reflect the abnormality between the
individual’s real cortical thickness and the normal thickness

and might be confounded by a inter-individual tissue boundary
variance which is not related to cortical thinning, we only
calculated z-scores for the voxels in the gray matter, i.e., voxels
with non-zero value in the binary image. In this condition, we
cannot simply take the mean of the negative z-scores in the
VOI as the cortical thickness decline indicator, because when the
mild atrophy regions containing small z-scores and the server
atrophy regions containing large both exist in the VOI, the

TABLE 3 | Predictive accuracies of the atrophy indicators.

Whole VOI based Multi-region based

Decline indicator GMV Cortical
thickness

GMV+ Cortical
thickness

GMV Cortical
thickness

GMV+ Cortical
thickness

AD vs. NC 92.7% 80.5% 92.7% 92.7% 90.2% 92.7%

MCI vs. NC 87.5% 75.0% 87.5% 87.5% 77.1% 91.7%

AD vs. MCI 67.6% 78.4% 78.4% 70.3% 78.4% 78.4%

Three-way∗ 69.8% 65.1% 71.4% 74.6% 65.1% 74.6%

∗Three-way, Three-way prediction.
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FIGURE 3 | Atrophy indicators’ longitudinal changing rate of all the individuals in AD, MCI, and NC group.

average z-values will underestimate the actual degree of atrophy
of the VOI. Hence, we proposed to use normalized z-scores to
replace the original z-scores, that is, the z-score of each voxel
was divided by the corresponding run-length at the voxel itself.
Thus, the contribution of serious cortical thinning to the cortical
thickness decline indicator could be enhanced in contrast that the
contribution of slight thinning could be weakened.

In MAP, the standard deviation image of the NCDB used
for z-score analysis was smoothed by a 6 mm FWHM Gaussian
kernel to avoid outliers at the positions where the standard
values are too small or zero. This is because few or no normal
controls contribute to the NCDB mean and standard deviation
at these positions (i.e., most or all of the normal controls in
NCDB have zero value here). In this study, to acquire more
precise assessment of atrophy, we didn’t smooth the standard
deviation image of the NCDB for the z-score analysis for
GMV because the regions described above can only exist at the
border of the standard brain, which is far from the VOI at
the MTL. Meanwhile, we used a Gaussian kernel with smaller
FWHM (3 mm, compared with the 6 mm FWHM kernel
used in MAP) to smooth standard deviation image of NCDB
for cortical thickness, as there might be several voxels in the
standard deviation image having zero values (i.e., all the subjects
of NCDB have the same run-length there), which may cause
infinite z-scores thus necessitate the smoothing. The use of

TABLE 4 | Correlation between the baseline GMV and cortical thickness
decline indicators (left column), and their longitudinal changing rate (right
column) for AD, MCI, and NC group.

Spearman rank correlation coefficients∗

Baseline Longitudinal changing rate

AD 0.569 (p = 0.1134) 0.593 (p = 0.1188)

MCI 0.407 (p = 0.3234) 0.726 (p = 0.0006)

NC 0.197 (p = 1.0000) 0.295 (p = 0.9156)

∗P-values of the correlation coefficients were corrected by Bonferroni method.
Boldfaced characters represent the statistically significant results.

a smaller FWHM kernel is important for correctly assessing
the cortical thickness change in spindly or small structures
such as hippocampus, entorhinal cortex, and amygdala, and for
enhancing the difference of cortical thinning between patients
and normal controls.

In this paper, the VOI determined by comparison between
AD and NC group widely covers hippocampal and adjacent
extrahippocampal regions in MTL, which are closely related to
AD pathology. Among these regions, hippocampus atrophy is
the best established and validated one for staging the progression
AD pathology (Jack et al., 2011) and the atrophy process
correlated with clinical decline (Fox et al., 1996). The reduction
of hippocampal volume of clinical AD patients range from 15
to 40% compared with NC (Bosscher and Scheltens, 2002) while
only by 10–15% for MCI (Shi et al., 2009). Entorhinal cortex
is the connection point of the hippocampus and neocortex, in
which early neurofibrillary tangles and tau deposits arise (Braak
and Braak, 1995; Braak and Del Tredici, 2015). Many studies
have demonstrated a more serious entorhinal cortex volume and
thickness reduction in AD than NC (Pennanen et al., 2004; Teipel
et al., 2006; Velayudhan et al., 2013), and the degree of EC volume
reduction in MCI was proved to be between that in NC and
AD (Stoub et al., 2006; Devanand et al., 2012; Velayudhan et al.,
2013). Besides, amygdala has abundant neural connections with
the hippocampus, and it is another region that early affected
by neurofibrillary tangles formation in AD. The reduction of
amygdala volume may range from 15–20% to 33–37% with AD
progression (Pini et al., 2016). In this study, atrophy indicators
calculated in VOI can reflect the overall atrophy situation in these
regions. As expected, the mean values of the GMV and cortical
thickness decline indicators of MCI group both fall in between the
AD and NC group. This demonstrates that MCI is a transitional
period between normal aging and AD. In addition, AD group
showed large intra-group atrophy variance, which may due to the
different atrophy severities of patients in different AD stages.

Gray matter volume reduction in cortices causes either cortical
area loss or cortical thinning. The correlation between GMV and
cortical thickness decline indicators may reflect the proportion
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of cortical thinning accompanied GMV reduction. In other
words, strong correlation may represent that GMV reduction
mainly causes cortical thinning rather than cortical area loss.
According to the results in Table 4, we can find that: (1) The
correlation between the two atrophy indicators at the baseline
and between their changing rates are both non-significant in
NC group. (2) The correlation between the changing rates of
the two indicators in MCI group is the strongest. (3) At the
baseline, although with no statistical significance, the correlation
of the two indicators in AD group tends to be the strongest.
Reasonable explanations are the follows: For normal aging, the
cortical area loss and cortical thinning may both exist in MTL and
the extent and rate of these two processes are both small thus poor
correlation could be observed between the GMV and cortical
thickness decline [matching finding (1)]. In MCI period, gray
matter loss may mainly causes cortical thinning while the cortical
area loss may be relatively inconspicuous [matching finding (2)].
With the accumulation of the cortical thinning accompanied
gray matter loss, the correlation between cortical thickness and
GMV decline become more prominent [matching finding (3)],
and this process may corresponding to the progression from
MCI to AD. In diagnosed AD stage, the atrophy can be very
severe and both cortical area loss and cortical thinning are
conspicuous, so the correlation between the changing rates of
the two indicators is weaken [matching finding (2)]. The reason
why statistical significance was only found between the changing
rates of the two atrophy indicators in MCI group might be the
small sample size (especially for AD group). The correlation
between the two indicators and between their changing rates
remains to be investigated in future study with larger sample
size.

The GMV decline indicator investigated in this study is
similar to an indicator proposed by Matsuda et al. (2012)
which was integrated in a voxel-based specific regional analysis
system for AD (VSRAD). In their study, through a ROC
analysis with the ‘atrophy severity in VOI’ indicator, the
discriminative accuracy of very mild AD from NC was up to
91.6%. In our study, the predictive accuracies obtained from
LOOCV for AD and NC discrimination and MCI and NC
discrimination were 92.7 and 87.5%, which demonstrated the
good discrimination performance of the GMV as a biomarker not
only for differentiating AD from NC, but also for differentiating
MCI from NC. In VSRAD, another indicator called ‘extent
in target VOI’ was defined as the percentage of voxels with
z-score less than −2 in the VOI. We calculated this indicator
based on the GMV z-score maps obtained in this study
and found this indicator was highly correlated (r = 0.98,
p < 0.0001) to the GMV decline indicator. This high correlation
may due to the smoothing process in GMV z-score map
calculation.

The cortical thickness decline indicator newly proposed
in this study gave a relatively low predictive accuracy (80.5,
75.0%) than GMV (92.7, 87.5%) in differentiating AD from
NC and MCI from NC. This may arise from that some
cognitive normal individuals also have low cortical thickness
in MTL (Pettigrew et al., 2016). On the other hand, the
cortical thickness decline indicator showed higher accuracy

(78.4%) than GMV (67.6%) in differentiating AD from MCI.
This suggest that cortical thickness is a more sensitive marker
for identify the atrophy difference between AD and MCI.
As the two indicators both have their own advantages,
alternative to the single indicator prediction, we used the
combination of these two indicators to make predictions and
achieved generally higher accuracies (The forth column in
Table 3).

The use of multi-region based prediction model was more
accurate than the whole VOI based model and we acquired
the highest general predictive accuracy (92.7% for AD vs. NC,
91,7% for MCI vs. NC, 78.4% for AD vs. MCI and 74.6% for
three-way prediction) by applying multi-region based prediction
model with the combination of the two atrophy indicators.
This is because the spatial distribution of the atrophy is also
important for identifying the atrophy patterns. Hippocampus
and adjacent extrahippocampal structures are consisted of
several subfields, but accurately segmentation of these subfields
remains a challenge. Hence, the brain regions (hippocampus,
parahippocampal gyrus, and amygdala) selection in this study is
based on AAL-90 atlas, which is a widely used whole brain atlas
that doesn’t label these subfields. Recent MRI studies (Mueller
and Weiner, 2009; Tang et al., 2015; Delli Pizzi et al., 2016; Mak
et al., 2016) revealed that AD pathology would differently affects
the hippocampal subfields, i.e., subiculum, cornu ammonis
sectors (CA) 1–3 and dentate gyrus (Duvernoy, 2013) and
increasing evidence suggested that the prediction sensitivity
and accuracy of pathological alterations the hippocampal
subfields than the whole hippocampus (Apostolova et al., 2010;
Maruszak and Thuret, 2014). Besides, impairment in adjacent
extrahippocampal subfield such as entorhinal, perirhinal, and
parahippocampal cortices also contributes to typical deficit in
episodic memory, which is the earliest characteristic of AD
(Nadel and Hardt, 2011). In future study, the proposed method
is expected to reveal pathology specific atrophy patterns of
these subfields using more sophisticated atlas. Furthermore, since
our method can give unbiased evaluation of abnormal changes
throughout the whole brain, alternations in neocortical cortex
such as parietal and frontal lobe cortex and subcortical structures
such as amygdala can also be utilized to track and predict the
progression of the disease.

The MRI data used in this study was acquired by the same kind
of scanner (Siemens TrioTim 3T) and with the same scanning
parameters. However, MRI scanners of different manufacturers
may have different inner image modifying techniques, thus
may cause bias when we use z-score analysis to compare
new patients’ MRI data with a previously established NCDB
based on a different kind of scanner or parameters. Therefore,
more validation study for the reproducibility of this method
for multiple center data and the statistics study for correcting
the indicator variance between different kinds of scanner and
parameters are desired. Before a systematic study to prove the
reproducibility of this method among different kinds of scanner
and scanning parameters, a good solution is that AD centers
can establish several NCDBs for different MRI scanners they
own, and analysis new patients’ data based on the corresponding
NCDB.
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